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Abstract. In this paper, the dynamics of heuristic algorithms for constructing small vertex covers (or
independent sets) of finite-connectivity random graphs is analysed. In every algorithmic step, a vertex is
chosen with respect to its vertex degree. This vertex, and some environment of it, is covered and removed
from the graph. This graph reduction process can be described as a Markovian dynamics in the space
of random graphs of arbitrary degree distribution. We discuss some solvable cases, including algorithms
already analysed using different techniques, and develop approximation schemes for more complicated
cases. The approximations are corroborated by numerical simulations.

PACS. 89.20.-a Interdisciplinary applications of physics – 02.50.-r Probability theory, stochastic processes,
and statistics – 89.20.Ff Computer science and technology

1 Introduction

Many questions of practical or scientific interest are based
on combinatorial optimization problems whose numeri-
cal solution requires time resources growing exponentially
with the system size, or more precisely, with the number of
binary variables needed to encode the problem. These in-
clude examples like planning and scheduling problems in
various real-world applications, optimization of chip de-
sign, cryptografic systems in computer science, or glassy
systems and random structures in physics. All these prob-
lems are characterized by a non-trivial cost function, or
energy, which has to be minimized over a large set of dis-
crete degrees of freedom.

The hardest of these optimization problems are col-
lected in a class called NP-hard [1]. Hardness refers in
this context to the exponential growth of the computa-
tional resolution time which is observed for all known nu-
merical algorithms. Despite an extremely large number of
known NP-hard problems, and numerous approaches to
solve them, no algorithms could be constructed by now
which are able to solve such a problem in a time grow-
ing only polynomially with the system size. This point
supports the widespread conjecture, that no such effective
algorithms are constructible.

The numerical search for globally optimal solutions is
thus restricted to relatively small systems. Once one has
to solve larger systems, good polynomial-time algorithms
are needed which construct low-cost configurations. These
are not guaranteed to be optimal, but in many cases they
can serve as reasonable approximations [2]. Many of these
algorithms are based on heuristic considerations, e.g. on
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expected correlations between local structures of the spe-
cific problem instance and its optimal solutions. Exploit-
ing these correlations can largely improve the performance
of a heuristic procedure.

Here we are using the example of vertex covers (VC)
on random graphs. It belongs to the basic NP-hard prob-
lems [1] and can be considered as a prototype optimiza-
tion problem over a random structure. In every step of the
presented heuristic algorithms, a vertex and possibly some
environment is chosen randomly and covered locally opti-
mal. The local structure of the graph, in particular its
vertex-degree distribution (distribution of co-ordination
numbers), can be exploited: Vertices of high degree are
more likely to be covered, those of small degree are more
likely to remain uncovered. We are using random graphs
in order to get some information about the typical-case
behaviour of the algorithm. This is to be contrasted with
the worst-case picture used in the traditional theory of
computational complexity [1].

The study of heuristic algorithms is also interesting
from a more theoretical point of view. Many random-
ized optimization or decision problems show characteristic
phase transition, when the parameters of the randomness
are tuned, see e.g. the special issues [3,4] for an overview.
The analysis of algorithms is frequently used in theoreti-
cal computer science to construct bounds for these phase
transitions, for some examples see e.g. [5–9] and refer-
ences therein. A different approach to these transitions is
given by applying techniques from equilibrium statistical
mechanics, as was done successfully for some of the funda-
mental combinatorial problems like 3-satisfiability [10,11],
number partitioning [12], or also vertex cover [13,14].
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This paper is organized as follows: In Section 2, we
introduce the definition of vertex covers and independent
sets, present the algorithms and review some important
facts on random graphs. The general dynamical equations
for the graph evolution process are developed in Section 3,
and they are solved for some cases in Section 4. Section 5 is
dedicated to approximations of the dynamical behaviour
of cases which could not be solved exactly. In Section 6,
we present how the leaf-removal algorithm of Bauer and
Golinelli [15,16] fits into the presented scheme. It is also
generalized to cases where the original algorithm fails to
construct a vertex cover. The last section finally summa-
rizes the results and gives an outlook to possible exten-
sions.

2 Model and algorithms

2.1 Vertex cover and related problems

Let us start with the definition of vertex covers [1]:
Take any graph G = (V,E) with N vertices i ∈

{1, ..., N} and M undirected edges {i, j} ∈ E ⊂ V × V .
A vertex cover (VC) is a subset U ⊂ V of vertices such
that for every edge {i, j} ∈ E there is at least one of its
endpoints i or j in U :

U ⊂ V is VC ↔ ∀{i, j} ∈ E : i ∈ U ∨ j ∈ U.
(1)

We call the vertices in U covered (cov), whereas the ver-
tices in its complement V \U are called uncovered (uncov).
The definition of a vertex cover implies therefore that ev-
ery edge has at least one covered end-point.

The full vertex set V is of course a trivial vertex cover
of any graph G. In this case, all edges have two covered
end-points, and at least some of the vertices can be set
uncov without uncovering any edge. The corresponding
optimization problem consists in finding a vertex cover of
smallest cardinality. This problem belongs, according to
the standard book by Garey and Johnson [1], to the basic
NP-hard optimization problems. Therefore, it is expected
to require a solution time growing exponentially in N and
M . The numerical solvability is consequently restricted to
relatively small graphs.

VC is related to other well-known and widely used NP-
hard problems. The first one is the independent set (IS)
problem. An IS is a subset S ⊂ V of vertices such that for
all i, j ∈ S we have {i, j} /∈ E. So V \S is obviously a VC
for every IS S, and every maximal IS is the complement of
a minimal VC. The independence number, defined as the
maximal cardinality max(|S|) of all ISs, is consequently
given by N −minVC U |U |.

A clique is a fully connected subgraph. So, if the ver-
tex subset S ⊂ V is an IS in G = (V,E), it is a clique
in the complementary graph G = (V, V × V \E). Finding
the largest clique in one graph is equivalent to finding the
largest independent set in the complementary graph.

There is also a physical problem which is equivalent
to vertex cover, or more obviously to the independent set

problem. Imagine the graph G to be a lattice, and pack
hard spheres of chemical radius 1 onto the vertices. Then,
once a vertex is occupied by such a particle, all neighbour-
ing vertices have to be empty. This is exactly what defines
an IS. The vertices which are not occupied by spheres thus
form a VC. This equivalence provides the basis of the sta-
tistical mechanics’ approach to minimal vertex covers on
random graphs [17].

2.2 Heuristic algorithms for constructing small vertex
covers

As already mentioned, the construction of a minimal ver-
tex cover is NP-hard, thus requiring exponential time re-
sources. It is therefore reasonable to develop good approx-
imation algorithms running in polynomial time. Here we
describe a class of linear time heuristic algorithms which
are able to produce small, but in general suboptimal VCs.

In this algorithm, vertices are sequentially assigned the
values cov and uncov until the full graph is covered. An
assigned value is not changed any more. This can be in-
terpreted as a graph reduction process: Once a vertex is
covered, it can be removed from the graph, together with
all incident edges. If a vertex is set uncov, all its neighbours
have to be covered in order to cover the graph. The central
vertex, its neighbours and all covered edges can again be
removed from the graph. The graph thus becomes smaller
and smaller, until no edges are left. The size of the re-
sulting vertex cover crucially depends on the order of the
vertex selection and the decision to cover/uncover the se-
lected vertex. The main heuristic idea is simple: A vertex
of high degree is more likely to be covered, a vertex of
small degree is more likely to be uncovered [14,17]. The
simplest local information, namely the vertex degree, is
thus correlated to the structure of small vertex covers,
and can be exploited algorithmically.

This is done in the following way: Given an initially
uncovered graph G = (V,E) and a non-negative integer
k, which we call the depth of the algorithm. In every algo-
rithmic step a vertex i is chosen randomly, and its nearest,
2nd-nearest... and kth-nearest neighbours are selected. All
these vertices, together with all edges connecting two of
it, form the induced subgraph G(k)(i) = (V (k)(i), E(k)(i)).
This subgraph can be efficiently covered such that all kth
nearest neighbours are set to cov. For details see the algo-
rithm presented below. The full subgraphs, together with
all edges connecting it to other vertices, is deleted from G.

For locally tree-like graphs, as e.g. random graphs or
Bethe lattices, the vertex covers of G(k)(i) are especially
simple: The kth neighbours of i are covered, the (k− 1)st
are uncovered, the (k−2)nd are covered again, and so on,
until i itself is covered (uncovered) for even (odd) depth
k of the algorithm.

The main heuristic concerns now the question, how the
central vertex i is selected. It exploits the above-mentioned
correlation between vertex degree and covering state of an
arbitrary vertex. For even depth k, the central vertex is
covered by the above procedure [19]. So it is useful to
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choose more frequently vertices of high degree in the sub-
graph remaining after elimination of already considered
vertices. We therefore select a vertex of degree d with some
weight wd which is a monotonously growing function of d.

In the case of odd k, the central vertex is uncov-
ered [19]. Here, the selection weight wd for vertices has
to be a monotonously decreasing function of the vertex
degree d.

The algorithm is summarized as follows, inputs are
the graph G = (V,E), the non-negative integer depth k,
a mapping m : {1, ..., N} → {free, cov, uncov}, which is
constantly set to m(i) ≡ free initially, and the positive
weight function w : N→ R+:

procedure heuristic-VC(G, k,m,w)
begin

if E = ∅ then
stop; {all edges are covered by vertices

with m(i) = cov}
Select a vertex i ∈ V of current degree d(i) randomly
with weight wd(i);
if d(i) = 0

begin
m(i) := uncov;
V := V \ {i};
heuristic-VC(G, k,m,w);

end;
else

begin
V (0)(i) := {i};
for κ from 1 to k

V (κ)(i) := V (κ−1)(i) ∪ {κth nearest
neighbours of i};

E(k+1)(i) := { {i, j} ∈ E | i ∈ V (k)(i) ∨
j ∈ V (k)(i) };
V := V \ V (k)(i);
E := E \E(k+1)(i);
m(j) := cov for all kth neighbours of i;
while V (κ−1)(i) 6= ∅

begin
Select a vertex j ∈ V (κ−1)(i)
of maximal distance from i;
m(j) := uncov;
m(l) := cov for all neighbours
l ∈ V (κ−1)(i) of j;
V (κ−1)(i) := V (κ−1)(i) \ {j, neighbours
of j};

end; {subgraph covered and removed
from G}

heuristic-VC(G, k,m,w);
end;

end;

Please note that the degree of free vertices may change
whenever G is reduced. The algorithm always considers
the current degree in the reduced subgraph, which equals
the number of uncovered incident edges. The algorithm
therefore defines a Markov process.

Some special cases of the algorithm where already con-
sidered for finite connectivity random graphs: In [18], the
case k = 0 and wd = 1 was included into a complete back-
tracking algorithm. The upper bound for the minimal ver-
tex covers constructed in this way was rather poor, but it
will be improved in Sections 4 and 5 by using better wd.
The case of k = 1, wd = 1 was analyzed in [5] using a dif-
ferent technique. Whereas being also quite unsatisfactory
for small and intermediate average graph connectivities
c0 = 2M/N , this algorithm correctly reproduces the lead-
ing asymptotic behaviour for large c0. In [16], very sur-
prising results where obtained for k = 1, wd = δd,1, where
only vertices of degree 1 (leafs) are selected and uncovered,
their neighbour is covered, and both are removed from the
graph. This algorithm is able to cover almost all edges for
c < e, thus producing a minimal vertex cover, but it stops
for higher connectivities if no vertices of degree 1 are left,
even if an extensive number of edges remains uncovered.
These two results suggest a promising generalization for
the case k = 1: If we choose w1 � wd > 0 for all d > 1,
this algorithm will work nearly as well as the leaf removal
procedure for small connectivities, but it will also give the
correct asymptotic behaviour for large c0. The extreme
case of choosing always a vertex of smallest current de-
gree will work best on random graphs, but it goes beyond
the analysis presented in this paper.

2.3 Random graphs of arbitrary degree distribution

In order to gain some insight into the typical behaviour of
this algorithm, we apply it to random graphs. This subsec-
tion is dedicated to summarizing some interesting known
results about these graphs, as far as they are important
for our analysis. As can be expected from the algorithm
presented above, we will concentrate our attention to the
distribution of vertex degrees. For a complete presentation
see [20].

The original idea [21] is to assign an equal probability
to all graphs having the same numbers N of vertices and
M of edges. A random graph GN,p, with 0 ≤ p ≤ 1, is
constructed in the following way: The vertex set is chosen
to be V = {1, 2, ..., N}. For all vertex pairs i, j ∈ V, i <
j, an edges is included into E with probability p. The
two vertices remain disconnected by a direct edge with
probability 1 − p. This graph has on average M = p

(
N
2

)
edges, its mean vertex degree equals c0 = (N − 1)p.

The most interesting case for vertex covers are graphs
of finite average connectivity, i.e. the average vertex de-
gree c0 = 2M/N stays finite in the thermodynamic limit
N →∞. In the above language, we have to fix p = c0

N−1 .
The resulting degree distribution is far from uniform. For
N � 1, a randomly chosen vertex has degree d with prob-
ability

pd = e−c0
cd0
d!
, (2)

i.e. the degree distribution approaches a Poissonian in the
thermodynamic limit. In our analysis we also need the
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probability of finding a vertex of degree d by following an
arbitrary edge. It is obviously proportional to d pd, due to
normalization we have

p
(1)
d = e−c0

cd−1
0

(d− 1)!
· (3)

We thus find a Poissonian distribution of d−1. The average
degree of vertices reached by following an edge equals c0 +
1, so there are on average c0 additional edges.

Random graphs undergo a percolation transition at
average vertex degree c0 = 1. Below this threshold, the
graph consists of an extensive number of small connected
components, each containing up to O(lnN) vertices. For
c0 > 1, the number of small connected components of
GN,c/(N−1) is still extensive, but there is also one macro-
scopic connected component of O(N) vertices. This giant
component grows with increasing c0, and exponentially
approaches size N when c0 becomes large.

The concept of random graphs was recently general-
ized to random graphs of arbitrary degree distribution
[22,23]. There, every graph of a given distribution pd (not
necessarily a Poissonian) is assigned the same probabil-
ity. These graphs can be easily generated: For all vertices
i = 1, ..., N , a degree d(i) is drawn randomly from pd. If∑
i d(i) is even, we continue, if not, we repeat the above

procedure. Then a large vertex set is created, contain-
ing every vertex i exactly d(i) times. Now we sequen-
tially select pairs of vertices and add these to the edge
set E, excluding only self-connections. Following again an
edge, the reached vertex has degree d with probability
p

(1)
d = d pd/c0, with c0 =

∑
k k pk denoting the average

degree.

2.4 Minimal vertex covers on random graphs

Before analysing the behaviour of the presented heuristics,
we will give a short overview over known properties of
minimal vertex covers on random graphs, see [17] for the
original presentation.

The analysis there was carried out for random graphs
GN,c0/(N−1), using the mapping to a hard-sphere lattice
gas described in Section 2.1. Using the replica method, a
grand-canonical approach was taken, including a chemical
potential µ controlling the number of hard spheres. In the
limit µ→∞, the system tends to the closest packings, or,
equivalently, to the minimal vertex covers. Assuming the
validity of replica symmetry, it was found that minimal
VCs contain a fraction of vertices given by

xc(c0) = lim
N→∞

N−1 min
VC U

|U |

= 1− W (c0)2 + 2W (c0)
2c0

(4)

with W (c0) being the real branch of the Lambert-W func-
tion defined as the inverse of WeW = c0. It was also
shown, that replica symmetry is locally stable for c0 ≤ e,
whereas it is unstable for larger average connectivities,

leading to broken replica symmetry. The correctness of (4)
was recently shown to be exact in [16] based on a leaf-
removal algorithm, which, as mentioned above, can be un-
derstood as a variant of heuristic-VC.

An interesting insight into the structural properties
of minimal vertex covers was given by identifying a cov-
ered and an uncovered backbone. The first one is defined
as the set of all vertices which are covered in all minimal
VCs, the uncovered backbone unifies all vertices being un-
cov in all minimal VCs. Denoting their relative sizes by
bcov/uncov(c0), the replica symmetric analysis leads to

bcov(c0) = 1− W (c0)2 +W (c0)
c0

buncov(c0) =
W (c0)
c0
· (5)

The remaining NW (c0)2/c vertices belong neither to the
covered nor the uncovered backbone, they change the cov-
ering state from one minimal VC to the next. A strong
correlation between degree distribution and backbone was
observed: Vertices of small degree tend to be more fre-
quently in the uncovered backbone, whereas vertices of
high degree can be found more likely in the covered back-
bone. As mentioned in Section 2.2, this can be exploited in
the heuristic algorithm by adapting the selection weights.

3 Rate equations for the degree distribution

3.1 Graph reduction dynamics

We assume that the input to the algorithm heuristic-VC
is a random graph G = (V,E) with N vertices and degree
distribution pd, and we concentrate on the graph reduction
process for a moment. The size of the constructed vertex
cover will be calculated in Section 3.2.

In every algorithmic step, a vertex is selected with
weight wd depending only on its current degree d. Then,
this vertex and all its nearest neighbours, 2nd nearest
neighbours, ... kth nearest neighbours are removed from
the graph. The edges incident to these vertices are re-
moved, too. Following this procedure, a smaller graph is
defined, and the algorithm is iterated. This graph reduc-
tion process is Markovian, because the action of each al-
gorithmic steps depends only on the properties of the cur-
rent reduced graph, more precisely on the current vertex
degrees and neighbourhood relations.

Let us further assume, that we start at (algorithmic)
time t = 0, and every iteration step is counted as ∆t.
The dynamics will be described by rate equations for the
vertex-degree distribution pd(t), or the number of vertices
Nd(t) = pd(t)N(t) of degree d, where N(t) denotes the
remaining vertex number at time t. Their dynamics can
be decomposed into the following elementary processes
(where 〈·〉t =

∑∞
d=0(·)pd(t) denotes the average over the

current degree distribution pd(t)):

• Removal of the central vertex: A central vertex of de-
gree d is selected with weight wd, i.e. with probability
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wdpd(t)/〈wd〉t. Nd(t) is thus reduced by one with this
probability.
• Removal of the 1st, 2nd, ..., kth nearest neighbours:

According to the last item, the central vertex has on
average 〈wdpd(t)〉t/〈wd〉t neighbours. As the degrees of
neighbouring sites are uncorrelated in random graphs,
each of these has degree d with independent probabil-
ities p(1)

d (t) = dpd(t)/〈d〉t. Random graphs are locally
tree-like, d − 1 of the d edges of a 1st neighbour lead
to 2nd nearest neighbours, i.e. the average number of
2nd neighbours equals 〈dwd〉t〈wd〉t

〈d(d−1)〉t
〈d〉t . This argument

can easily extended to 3rd neighbours etc.
• Update of the connectivity of (k + 1)st neighbours:

The edges connecting kth and (k + 1)st neighbours
are removed from the graph, too. The degree of every
(k + 1)st neighbour is thus reduced by one.

These processes are combined to evolution equations for
the expected numbers Nd(t) of vertices with degree d at
time t:

Nd(t+∆t) = Nd(t)−
wdpd(t)
〈wd〉t

− 〈dwd〉t〈wd〉t

×
k∑

m=1

(
〈d(d − 1)〉t
〈d〉t

)m−1
dpd(t)
〈d〉t

+
〈dwd〉t
〈wd〉t

(〈d(d − 1)〉t
〈d〉t

)k
× (d+ 1)pd+1(t)− dpd(t)

〈d〉t
· (6)

The first two lines describe the deletion of vertices, the
last two ones describe the update of the degrees of all
(k+1)st neighbours. These equations are valid for the av-
erage trajectory, which is, however, followed with proba-
bility approaching 1 for N = N(t = 0)→∞. Macroscopic
deviations appear only with exponentially small probabil-
ity and are thus important for smallN only. The quality of
using the average trajectory is demonstrated in the inset
of Figure 1. There the trajectory of a single graph with
N = 3 × 104 vertices is found to excellently follow the
analytical prediction.

Using equations (6), we can calculate also the evolu-
tion of the total numbers of remaining vertices, N(t) =∑
dNd(t), and edges, M(t) = 1

2

∑
d dNd(t):

N(t+∆t) = N(t)− 1− 〈dwd〉t〈wd〉t

k∑
m=1

(
〈d(d− 1)〉t
〈d〉t

)m−1

M(t+∆t) = M(t)− 1
2
〈dwd〉t
〈wd〉t

×
(

1 +
〈d2〉t
〈d〉t

k+1∑
m=1

[
〈d(d − 1)〉t
〈d〉t

]m−1

−
[
〈d(d− 1)〉t
〈d〉t

]k+1
)
· (7)

As we are mainly interested in the behaviour of large
graphs, N � 1, we may change to intensive quantities
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Fig. 1. Final size x
(0,α)
f (c) of the vertex covers constructed

by the depth-zero heuristic with α = 0, 1, 2, 6 (full lines from
top to bottom). For a comparison, the replica symmetric xc(c)

(dashed line, exact for c < e) and the results x
(1,0)
f (c) of

Gazmuri’s depth-one algorithm (dotted line) are added. The in-
set shows the time dependent average vertex degree c(t) for the
same values of α (full lines from top to bottom) together with
numerical data for a single random graph with N = 3 × 104.
This illustrates the quality of taking the average trajectory
(α = 0, 1), as well as the quality of the binomial approxima-
tion (α = 2, 6).

by writing N(t) = n(t)N, Nd(t) = pd(t)n(t)N . Setting
further ∆t = 1

N , and replacing differences by derivatives
in the thermodynamic limit, we find

ṅ(t) =−1−〈dwd〉t〈wd〉t

k∑
m=1

(
〈d(d− 1)〉t
〈d〉t

)m−1

ṅ(t)pd(t) + n(t)ṗd(t) = −wdpd(t)〈wd〉t
− 〈dwd〉t〈wd〉t

×
k∑

m=1

(
〈d(d− 1)〉t
〈d〉t

)m−1
dpd(t)
〈d〉t

+
〈dwd〉t
〈wd〉t

(
〈d(d− 1)〉t
〈d〉t

)k
× (d+ 1)pd+1(t)− dpd(t)

〈d〉t
· (8)

The graph reduction process is thus described by an in-
finite set of non-linear differential equations, where the
non-linearity enters only through the time-dependent av-
erages 〈·〉t. As we were starting with an ordinary random
graph, these equations have to be solved under the initial
condition

n(0) = 1

pd(0) = e−c0
cd0
d!

(9)

where c0 equals the initial average vertex degree.
In Section 5 we also need the dynamical equations

for the moments 〈dn〉t of pd(t). Multiplying the second
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of equations (8) with dn and summing over all degrees
yields

n(t)
d
dt
〈dn〉t =

〈wd〉t〈dn〉t − 〈dnwd〉t
〈wd〉t

+
〈dwd〉t
〈wd〉t

〈d〉t〈dn〉t − 〈dn+1〉t
〈d〉t

×
k∑

m=1

(
〈d(d− 1)〉t
〈d〉t

)m−1

+
〈dwd〉t
〈wd〉t

〈d(d− 1)n〉t − 〈dn+1〉t
〈d〉t

×
(
〈d(d− 1)〉t
〈d〉t

)k
· (10)

Please note that these equations do not contain any finite
and closed subset of equations, because the evolution of
any moment depends also on higher moments.

A similar approach was chosen in [7] to analyze an al-
gorithm constructing the maximal sub-graph having min-
imal degree K, i.e. the so-called K-core. Pittel et al. rig-
orously derived and solved a closed set of equations for
N0(t), ..., NK−1(t) and M(t). An analogous reduction to a
finite number of equations will be constructed in Section 6
for the generalized leaf-removal algorithm, but it cannot
be achieved for the general case.

Our approach resembles also the rate equation ap-
proach used in the area of growing networks [24–26]. Note,
however, that there the evolution of the number Nd(t) of
vertices of degree d depends only on the vertices having
smaller degree, because edges are always added and never
deleted. So, in principle, the evolution equations can be
solved by calculating first N0(t), then N1(t) and so on. In
the graph reduction process the problem becomes more
complicated since the evolution of Nd depends also on
Nd+1, for arbitrary d, but there is no maximal degree d in
the Poissonian initial condition.

3.2 The cardinality of constructed vertex covers

Before trying to solve equations (8, 9) for specific choices
of wd and k, we will give general expressions for the num-
ber X(t) of vertices which are covered by the algorithm.

For the locally tree-like case of random graphs, the kth
neighbours of the selected vertex are covered, the (k−1)st
are uncovered etc. So the covering state of the central ver-
tex depends on the depth k: For even k, it will be covered
(if d 6= 0), for odd k, it will be uncovered. We therefore
consider these two cases independently.

3.2.1 Odd depth k

For odd k, the central vertex is almost always uncovered.
Denoting the expected number of covered vertices at time

t with X(t) = x(t)N , we thus find

X(t+∆t) = X(t) +
〈dwd〉t
〈wd〉t

(k−1)/2∑
m=0

(
〈d(d − 1)〉t
〈d〉t

)2m

,

(11)

cf. the first of equations (7). Going again to the limit of
large graphs, N →∞, this can be written as a differential
equation for x(t):

ẋ(t) =
〈dwd〉t
〈wd〉t

(k−1)/2∑
m=0

(
〈d(d − 1)〉t
〈d〉t

)2m

. (12)

Once we know the solution of the graph dynamical equa-
tion (8), we can calculate the time tf where all edges are
covered, 〈d〉tf = 0, and integrate the last equation over
the time interval [0, tf ]. All removed edges were covered
by our algorithm, we thus have constructed a vertex cover
of relative size x(tf ). As the described average trajectory
is followed with probability one for N → ∞, this x(tf )
gives an upper bound for the true minimal vertex cover
size of the random graph under consideration.

3.2.2 Even depth k

For even k, the central vertex is covered in general. Only
if it is disconnected, i.e. if its degree equals zero, it is set
to uncov, see the algorithm heuristic-VC. The last case
happens with probability w0p0(t)

〈wd〉t . We thus conclude for
X(t)

X(t+∆t) = X(t) + 1− w0p0(t)
〈wd〉t

+
〈dwd〉t
〈wd〉t

k/2−1∑
m=0

( 〈d(d− 1)〉t
〈d〉t

)2m+1

, (13)

or, in the limit N →∞,

ẋ(t) = +1− w0p0(t)
〈wd〉t

+
〈dwd〉t
〈wd〉t

k/2−1∑
m=0

(
〈d(d− 1)〉t
〈d〉t

)2m+1

·

(14)

This equation can be integrated, once we know the solu-
tion of equations (8), and an upper bound to xc(c0) can
be read off.

4 The solvable case of linear selection
weights wd

The problem in solving differential equations (8) with ini-
tial conditions (9) is, that the Poissonian shape of the de-
gree distribution is, in general, not conserved under the
dynamics. In such cases one has to keep track of all the
individual probabilities pd(t) for each possible degree d.



M. Weigt: Dynamics of heuristic optimization algorithms on random graphs 375

As the dynamics of pd(t) depends on pd+1(t) for all d,
and d is not bound from above for the Poissonian initial
condition, it is not obvious how to construct a finite and
closed subset of equations which can be solved separately,
opening the door to the solution for all pd.

There exist, however, some cases where the Poissonian
shape of the degree distribution is conserved, as can be
shown explicitly by plugging a Poissonian ansatz

pd(t) = e−c(t)
c(t)d

d!
(15)

into (8) and verifying, that the same equation for the av-
erage vertex degree c(t) is reproduced for arbitrary d. The
most general case for this behaviour is found for linear
selection weights

wd = A · d+B (16)

where A,B are arbitrary non-negative real numbers. In
this case, the graph can be totally specified by calculating
n(t) = N(t)

N and c(t) = 2M(t)
N(t) . Their evolution can be

read off from equations (7), where the averages 〈·〉t can be
expressed via c(t):

〈d〉t = c(t)
〈d(d− 1)〉t = c(t)2

〈wd〉t = Ac(t) +B

〈dwd〉t = Ac(t)2 + (A+B)c(t). (17)

In the limit N →∞ the graph reduction dynamics is thus
completely determined by the differential equations

ṅ(t) =−1−Ac(t)
2 + (A+B)c(t)
Ac(t) +B

k−1∑
m=0

c(t)m

ṅ(t)c(t) + n(t)ċ(t) = −2
Ac(t)2 + (A+B)c(t)

Ac(t) +B

k∑
m=0

c(t)m

(18)

Eliminating ṅ(t) from the second equation, we end up with

n(t)ċ(t) = −Ac(t)
2 + (2A+B)c(t)
Ac(t) +B

− Ac(t)2 + (A+B)c(t)
Ac(t) +B

k∑
m=1

c(t)m . (19)

These equations have to be solved under the initial con-
ditions n(t = 0) = 1 and c(t = 0) = c0

4.1 Constant selection weights: A = 0, B = 1

Equations (18, 19) simplify further if we restrict it for
a while to constant selection weights wd ≡ 1, i.e. A =
0, B = 1. There we find

ṅ(t) = −
k∑

m=0

c(t)m

n(t)ċ(t) = c(t)ṅ(t) . (20)

In the second line, the equation for ṅ(t) was already used
to eliminate the complicated sum of powers of c(t). Using
the initial conditions n(t = 0) = 1 and c(t = 0) = c0, the
second line results in

c(t) = c0n(t) , (21)

and one of the two functions can be eliminated from the
first of equations (20). We consequently find

ċ(t) = −c0
k∑

m=0

c(t)m (22)

which is solved implicitly by

t =
1
c0

∫ c0

c(t)

dc̃∑k
m=0 c̃

m
· (23)

The algorithm stops when all edges are covered, i.e. for
c(tf ) = 0. This final time tf corresponds, in the original
algorithmic language, to tfN iterations of heuristic-VC,
and is given by

tf =
1
c0

∫ c0

0

dc̃∑k
m=0 c̃

m
· (24)

These results can be used in order to determine the rel-
ative size xf (c0) = x(tf ) using the results of Section 3.2.
There we observed a difference between even and odd val-
ues k of the depth of heuristic-VC according to the fact
that the central vertex in one case is almost always cov-
ered, in the other case uncovered. We therefore continue
discussing these cases separately, starting with k = 0, go-
ing then to arbitrary odd k, and discussing general even
k at the end of this section.

4.1.1 The simplest algorithm

The simplest possible algorithm has depth k = 0: In every
algorithmic step an arbitrary vertex is chosen and covered
if its degree is non-zero, uncovered else. The vertex and all
incident edges are removed from the graph. This simple
algorithm was already analysed in [18] as the heuristic un-
derlying a complete backtracking algorithm. The results
given there can be easily reproduced, for k = 0 the inte-
gration in equation (23) can be trivially carried out. We
find a simple linear decrease of the average vertex degree,

c(t) = (1− t)c0 , (25)

and the final time becomes tf = 1 as one vertex is removed
in every algorithmic step. The resulting size of the con-
structed vertex cover follows easily by integrating equa-
tion (14), with p0(t) = e−c(t):

x
(0,0)
f (c0) = 1− 1− e−c0

c0
, (26)

cf. [18]. This gives the very first and simplest upper bound
on the true size of minimal vertex covers which is, however,
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not very good: For, e.g., c0 = 2, we find xf (2) = 0.5677
compared to the true value xc(c) = 0.3919, cf. Equa-
tion (4). Also the asymptotic behaviour for large average
vertex degrees, xf (c0 � 1) ' 1− 1

c0
, does not meet the ex-

act asymptotic behaviour, which was evaluated by Frieze
[27] to be xc(c0 � 1) ' 1− ln c0

c0
to leading order.

4.1.2 Gazmuri’s algorithm and odd depths

This asymptotics is found to hold also for a slightly more
complicated case: It is valid for all non-zero values of the
depth, i.e. for k > 0. Let us, for simplicity, start with
arbitrary odd values of the depth k of the algorithm. For
k = 1, the algorithm is equivalent to the one proposed
by Gazmuri [5]: In every time step, an arbitrary vertex is
chosen and set to uncov, all its neighbours are covered, and
the whole cluster including all incident edges are removed
from the graph. Gazmuri has already characterized the
performance of this algorithm, using a different technique.

Please remember that, according to equation (22), the
time dependency of the mean vertex degree is given by

ċ(t) = −c0
k∑

m=0

c(t)m . (27)

This can be used to solve equation (12) for the evolution
of the number of covered vertices, which, using the Pois-
sonian distribution (15), and integrating over t reads

x(t) =
∫ t

0

dt′
(k−1)/2∑
m=0

c(t′)2m+1 . (28)

Changing variables from t to c, and plugging in equa-
tion (27), we find

x(c) =
1
c0

∫ c0

c

dc̃
∑(k−1)/2
m=0 c̃2m+1∑k

n=0 c̃
n

=
1
c0

∫ c0

c

dc̃
c̃

1 + c̃

=
c0 − c
c0

− 1
c0

ln
1 + c0
1 + c

· (29)

This expression gives the x-c-trajectory which is interest-
ingly independent on the depth k (as long as k is odd).
The only difference is given by the time dependencies
x(t) = x(c(t)) as c(t) is k-dependent, cf. equation (23).

The graph is completely covered when c(t) reaches
zero. The cardinality of this vertex cover is almost surely
given by xf (c0) = x(c = 0), i.e.

x
(k,0)
f (c0) = 1− ln(1 + c0)

c0
(30)

independently on the (odd) depth k of the algorithm. For
k = 1, Gazmuri’s bound is thus reproduced, and the lead-
ing order of the behaviour for large initial connectivities c0
is correctly found. The algorithm is, however, less success-
ful for small and intermediate connectivities, as we will see
in the following sections.

4.1.3 The case of even depth k ≥ 2

The case of even depth leads to more complicated ex-
pressions, which cannot be evaluated explicitly. The main
problem is induced by the p0(t)-contribution in the evolu-
tion of x(t), as given in equation (14). After having applied
the Poissonian ansatz (15), the latter reads

x(t) =
∫ t

0

dt′

 k/2∑
m=0

c(t′)2m − e−c(t)

 , (31)

hence we find for the relative vertex-cover size, and arbi-
trary even depth k

x
(k,0)
f (c0) =

1
c0

∫ c0

0

dc̃
∑k/2
m=0 c̃

2m − e−c̃∑k
n=0 c̃

n
· (32)

This integral cannot be evaluated explicitly for arbitrary
even k. We can, however, extract the asymptotic be-
haviour for c0 � 1. In this limit, the terms of O(e−c̃) and
O(c̃0) can be neglected in both the numerator and the de-
nominator in the last integral. The corrections from the
integration interval (0, O((c0)0)) are of order 1 and thus
suppressed by the prefactor 1

c0
, compared to the leading

terms

x
(k,0)
f (c0 � 1) ' 1− ln(1 + c0)

c0
(33)

which coincide with the case of odd depth.

4.2 Linear selection weights: A = 1, B = 0

After having discussed in great detail algorithms with
wd = const., i.e. simple algorithms selecting central ver-
tices completely at random, without regarding its degree,
we now turn to the case of linear wd. In this case, as
already mentioned at the beginning of this section, the
degree distribution still stays Poissonian. This can be un-
derstood intuitively in the following way: The case wd = d
is equivalent to choosing an arbitrary edge with constant
probability, and selecting one of the end-vertices. Accord-
ing to Section 2.3, the chosen vertex will have degree
d with probability p

(1)
d ∝ dpd. The more general case

wd = Ad + B, cf. equation (16), corresponds to mixing
this selection procedure (weight A) with the uniform se-
lection of vertices (weight B).

Fixing A to a non-zero value is sensible only for even
depth values k since these correspond to covering the cen-
tral vertex of the cluster of radius k. As mentioned above,
the vertex degree is correlated to the covering state in
small vertex covers, so it does not make sense to prefer-
entially select vertices of high degree and to uncover it
subsequently. The performance of the algorithm is thus
only improved for even k. The strongest improvement is
obtained for wd = d, i.e. for B = 0.

Whereas equations (18, 19) lead to complicated cou-
pled non-linear differential equations for c(t) and n(t),
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which have to be solved numerically for general even k,
the case k = 0 becomes very simple. There, the equations
read

ṅ(t) = −1
n(t)ċ(t) = −c(t)− 2

ẋ(t) = 1 (34)

and are solved by

n(t) = 1− t
c(t) = c0 − (2 + c0)t
x(t) = t. (35)

The graph is covered for c(tf ) = 0, which leads to vertex
covers of size

x
(0,1)
f (c0) = 1− 2

2 + c0
· (36)

This size is always smaller than the one found for the very
simplest algorithm (wd = 1, k = 0), but stays worse than
Gazmuri’s algorithm (wd = 1, k = 1). Also the asymptotic
behaviour is not correctly reproduced.

5 An approximation for depth-zero algorithms
with non-linear selection weights

If we choose non-linear selection weights wd = dα, α 6=
0, 1, the graph reduction dynamics deviates from the un-
restricted ensemble of random graphs, and the degree dis-
tribution becomes non-Poissonian. The new distribution
thus cannot be described by the evolution of its mean
value alone, and we have to solve all equations from (8)
simultaneously. In general, this cannot be achieved an-
alytically. To approximate the solution numerically, we
may cut the tail of pd(t), and solve only a finite num-
ber of equations. This works fine for small initial values
of c0 = c(t = 0) because of the rapid decrease of the Pois-
sonian distribution. For larger values of c0 however, the
number of remaining equations becomes large, too. So it
would be better to find an approximation of pd(t) depend-
ing only on a small number of parameters. The dynamics
of these parameters can be determined from the lowest
moments 〈dm〉t, with m ranging from 1 to the number of
parameters.

This section is dedicated to algorithms of depth k = 0,
but non-linear selection weights wd = dα, α 6= 0, 1. Every
algorithmic step thus removes one vertex from the graph.
No vertices of degree 0 are selected (w0 = 0); all selected
vertices thus have to be covered according to heuristic-VC.
We thus trivially have

n(t) = 1− t
x(t) = t (37)

and the size of the constructed vertex cover is given by
x

(0,α)
f (c0) = tf with c(tf ) = 0. Note that this does not nec-

essarily imply n(tf ) = 0 as only vertices of non-vanishing

degree are selected. At time tf , the remaining graph con-
sists of (1− tf )N isolated vertices.

As the initial condition pd(t = 0) of the graph reduc-
tion dynamics is given by a Poissonian of mean c0, we are
looking for a deformation of the Poissonian distribution
which allows to independently vary mean and variance,
and thus to approximate the true pd(t). A simple possi-
bility is given by the generalized binomial expression

πd(t) =
Γ (1 + µ(t)−1)

Γ (1 + µ(t)−1 − d)Γ (1 + d)

× [1− c(t)µ(t)](µ(t)−1−d) [c(t)µ(t)]d . (38)

For µ(t)→ 0, this expression approaches a Poissonian dis-
tribution of mean c(t), the initial condition is thus char-
acterized by c(t = 0) = c0 and µ(t = 0) = 0. Please
note, however, that (38) does not necessarily describe a
probability distribution, because πd(t) becomes negative
for certain d if 1/µ(t) is not a positive integer. We do not
expect this to produce serious problems for the calculated
averages, as long as the absolute value of these negative
πd(t) stays neglectable compared to the total normaliza-
tion 1. This is exactly what happens in our case, as we
will see below.

The moments of πd(t) are given by

Π(n+1)(t) :=
∞∑
d=0

d(d− 1) · · · (d− n)πd(t)

= c(t)n+1[1− µ(t)][1− 2µ(t)] · · · [1− nµ(t)]. (39)

The product d(d − 1) · · · (d − n) can be expanded into a
sum of pure powers, their mean values are determined by
inverting this sum:

Π̃(n)(t) :=
∞∑
d=0

dnπd(t) =
n∑

m=1

a(n)
m Π(n)(t). (40)

The coefficients are given iteratively by a(n)
m = ma

(n−1)
m +

a
(n−1)
m−1 , using the trivial identity a(1)

m = δm,1 and the con-
vention a(n)

0 ≡ 0 for all n.
Given two non-trivial moments, e.g. n = 1, 2, c(t) and

µ(t) can be calculated, and all other moments are deter-
mined. We can thus approximate the dynamics of the de-
gree distribution by considering the dynamics of the first
two moments of pd(t) only. The exact equations for 〈d〉t
and 〈d(d − 1)〉t follow from equation (10) by fixing k = 0
and wd = dα,

(1− t) d
dt
〈d〉t = 〈d〉t − 2

〈dα+1〉t
〈dα〉t

(1− t) d
dt
〈d(d− 1)〉t = 〈d(d− 1)〉t −

〈dα+2〉t
〈dα〉t

+
〈dα+1〉t
〈dα〉t

×
(

1− 2
〈d(d− 1)〉t
〈d〉t

)
· (41)
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Fig. 2. (a) Degree distribution pd(t) for heuristic-VC with
depth k = 0, selection weights wd = d2, and initial condi-
tion c0 = 10, for t = 0.2, 0.4, 0.6 (full, dotted, dashed lines).
The symbols are numerical data for a single graph of size
N = 3 × 104 and coincide extremely well with the binomial
approximation represented by the lines (lines are connecting
data for integer d and thus are guides to the eyes only). The
quality of the approximation is similarly good for all inves-
tigated initial c0. (b) Same as (a), but with wd = d6. The
coincidence between numerical data and binomial approxima-
tion is slightly worse than in (a), but still very convincing. The
quality of the approximation increases with growing initial c0,
supporting thus our conjecture that the asymptotic behaviour
is correctly described by the approximation.

They contain higher moments of pd(t), but are closed ap-
proximately by using (39, 40):

(1− t) d
dt
c(t) = c(t)− 2

Π̃(α+1)(t)
Π̃(α)(t)

(1− t) d
dt
(
c(t)2[1− µ(t)]

)
= c(t)2[1− µ(t)]− Π̃(α+2)(t)

Π̃(α)(t)

+
Π̃(α+1)(t)
Π̃(α)(t)

(1− 2c(t)[1−µ(t)]) .

(42)

These two equations can be easily converted to ordinary
differential equations ċ(t) = Fc(c(t), µ(t), t) and µ̇(t) =
Fµ(c(t), µ(t), t) which are, however, not analytically solv-
able for general values of α. They can instead be solved
efficiently using numerical standard techniques. The re-
sults are displayed in Figure 1 together with numerical
simulations obtain for large graphs. We find that the bino-
mial approximation works extremely well for small values
of α, systematically growing deviations appear for larger
α, cf. Figure 2. We also find that heuristic-VC is able to
approximate the true minimal vertex-cover size up to a
few percent, performing better for larger α. We observe,
however, that even the vertex covers constructed for very
large α remain suboptimal, i.e. extensively larger than the
minimal VCs.

The behaviour of equations (42) for large c(t = 0) = c0
can be extracted analytically by expanding the equations
for ċ(t) (µ̇(t)) to O(1/c) (O(1/c2)). Fµ is a sum of terms of
O(µ2), O(µ/c) and O(1/c2), and µ(t) stays of O(1/c2) due
to its initial condition µ(0) = 0. We thus find (1 − t)ċ =
−c − 2α − O(1/c) which is solved to leading orders by
c(t) ' c0− t(c0 + 2α). From the vanishing of these leading
orders we can read of the dominant contributions to the
constructed vertex covers, which we conjecture to be exact
also for the true dynamics:

x
(0,α)
f (c0 � 1) ' 1− 2α

c0 + 2α
· (43)

For larger α, the asymptotics becomes better and bet-
ter, but still does not reach the correct behaviour xc '
1−ln(c0)/c0 of the minimal VCs. Note that, for sufficiently
large c0, Gazmuri’s depth-one algorithm outperforms the
depth-zero algorithm for arbitrary α. We expect, however,
that the correct asymptotic behaviour is reached by expo-
nential selection weights wd, and hence in particular for
the heuristic where always a vertex of maximal degree is
chosen.

6 Generalizing the leaf removal procedure:
depth-one algorithms

The best performance can be achieved using a general-
ization of the leaf-removal algorithm (LR) proposed by
Bauer and Golinelli [15]. Their algorithm is based on the
following observation: Consider a vertex of degree one, i.e.
a vertex which has a single neighbour. One of these two
vertices has to be covered in order to cover also the con-
necting edge. It is obviously better to cover the neighbour
than the vertex of degree one. Iterating this procedure,
there are two possible final situations:
(i) All edges are covered, and the constructed vertex cover
is a minimal one.
(ii) There are uncovered edges, but no vertices of current
degree one are left. The algorithm stops without having
constructed a vertex cover.
This algorithm can be understood as a special case of
heuristic-VC with depth k = 1 and wd = δd,1. Follow-
ing a completely different route, Bauer and Golinelli have
found a surprising result: For random graphs of average
degree c0 < e, their algorithm is able to cover almost all
edges, and the predicted minimal vertex cover size coin-
cides with the replica symmetric one found in [13]. For
larger average degrees, c0 > e, case (ii) is valid, and a
finite fraction of edges remains uncovered. We re-derive
this result below using our dynamical rate equations.

In order to construct a small vertex cover also for
higher-connectivity graphs, the algorithm has to be mod-
ified to wd > 0 for all d > 0. The case wd = Aδd,1 + 1,
with A > 0, will therefore be analysed in Section 6.2. For
A � 1, this algorithm performs nearly as well as pure
leaf-removal for small average vertex degrees. For large c0
it finally becomes more and more similar to Gazmuri’s al-
gorithm, being still better for any finite c0. We will call
this algorithm generalized leaf removal (GLR).
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The best performance is, of course, obtained for wd =
e−αd, with α→∞. There always a vertex of minimal de-
gree is selected and uncovered, all neighbours are covered.
As long as the fraction p1(t) of vertices of degree one is
non-zero, the algorithm is equivalent to the leaf-removal
procedure. This is valid in particular also for c0 < e,
where (almost) minimal VCs are constructed. The anal-
ysis of this algorithm goes, however, beyond the analysis
presented here.

6.1 Leaf removal

Let us first concentrate on the leaf-removal algorithm (LR)
in its original version, i.e. on depth k = 1 and selection
weights wd = δd,1. In every algorithmic step, exactly two
vertices are removed from the graph G, and exactly one
vertex is covered. We therefore conclude

n(t) = 1− 2t
x(t) = t. (44)

The degree distribution follows, according to (8), from the
dynamical equations

(1− 2t)ṗd(t) = 2pd(t)− δd,1 −
〈d2〉t
〈d〉2t

dpd(t)

+
〈d(d− 1)〉t
〈d〉2t

(d+ 1)pd+1(t). (45)

Vertices of degree d > 1 are only touched if they are first or
second neighbours of a vertex of degree one, in which cases
they are either covered and removed, or their vertex degree
is reduced by one. The degrees of neighbouring vertices are
statistically independent, we thus expect pd(t) to keep its
Poissonian shape for all d > 1. In fact, the ansatz

pd(t) = γ(t)e−κ(t)κ(t)d

d!
∀d > 1 (46)

together with the global normalization

1 = p0(t) + p1(t) + γ(t)
(

1− e−κ(t)[1− κ(t)]
)

(47)

can be plugged into equations (45) and leads to uniquely
determined equations for γ(t), κ(t) and p1(t). The latter
is, for technical reasons, replaced by an equation for c(t).
Using

〈d〉t = c(t)

= p1(t) + γ(t)κ(t)
[
1− e−κ(t)

]
〈d(d − 1)〉t = γ(t)κ(t)2 , (48)

these read

(1− 2t)ċ(t) = 2c(t)− 2
γ(t)κ(t)2 + c(t)

c(t)

(1− 2t)κ̇(t) = −κ(t)
γ(t)κ(t)2 + c(t)

c(t)

(1− 2t)γ̇(t) = γ(t)
2c(t)− κ(t)

c(t)
· (49)

The initial conditions are c(0) = κ(0) = c0, γ(0) = 1. The
equation for the average vertex degree c(t) can be removed
by observing

(1− 2t)
d
dt

(
κ(t)2

c(t)

)
= (1− 2t)

κ(t)2

c(t)

(
2
κ̇(t)
κ(t)

− ċ(t)
c(t)

)
= −2

κ(t)2

c(t)
(50)

which is solved by

c(t) =
κ(t)2

(1− 2t)c0
· (51)

The solution of the two remaining equations is given im-
plicitly by

t = 1− 1
2c0

(
[κ(t)−W (c0eκ(t))]2 + 2W (c0eκ(t))

)
γ(t) =

W (c0eκ(t))
(1− 2t)c0

(52)

as can be checked explicitly using equations (49). W de-
notes again the Lambert-W function, cf. Section 2.4. The
graph is covered if this trajectory reaches c(tf ) = 0, i.e.
for κ(tf ) = 0. From the first of equations (52) we thus find
the final time

tf = 1− W (c0)2 + 2W (c0)
2c0

· (53)

This result is only valid, if pd(t) ≥ 0 for all d and all
0 < t < tf . Using equation (48), we find

p1(t) = c(t)− γ(t)κ(t)
[
1− e−κ(t)

]
=

κ(t)
(1− 2t)c0

(
κ(t)−W (c0eκ(t))[1− e−κ(t)]

)
=:

κ(t)
(1− 2t)c0

Φ(κ(t)). (54)

The prefactor of Φ(κ) is non-negative, it is thus sufficient
to investigate Φ(κ) for κ ≥ 0. We have Φ(0) = 0, and

dΦ
dκ

= 1− W (c0eκ)
1 +W (c0eκ)

[1− e−κ]− e−κW (c0eκ), (55)

i.e. Φ′(0) = 1 −W (c0). The monotonous function W (c0)
becomes larger than 1 for c0 > e, i.e. in this case p1(t)
would approach zero from negative values. This is a con-
tradiction. We therefore conclude

∀c0 < e : xLR(c0) = 1− W (c0)2 + 2W (c0)
2c0

, (56)

and this value coincides with the relative size of a minimal
vertex cover. For c0 > e the algorithm gets stuck if p1(t) =
0 is reached, no vertices of degree one are left, and a finite
fraction of all edges remains uncovered.
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6.2 Generalized leaf removal

In order to overcome this problem, we generalize the leaf-
removal algorithm by modifying the selection weights to
wd = 1 + Aδd,1. This algorithm interpolates between the
algorithms of Bauer and Golinelli (A→∞, exact minimal
VCs for c0 < e) and the one of Gazmuri (A = 0, correct
leading asymptotic behaviour for c0 � 1). We thus expect
that this algorithm shows a very good performance in the
whole finite-connectivity region for large, but finite A.

Also in this case, the Poissonian shape of pd(t) remains
correct for all degrees d > 1, and ansatz (46) together with
the normalization constraint (47) remains valid. Plugging
everything into the dynamical equations (8), we directly
arrive at

ṅ(t) = −1 + c(t) + 2Ap1(t)
1 +Ap1(t)

n(t)ċ(t) = c(t)
1 + c(t) + 2Ap1(t)

1 +Ap1(t)

− 2
[γ(t)κ(t)2 + c(t)][c(t) +Ap1(t)]

[1 +Ap1(t)]c(t)

n(t)κ̇(t) = −κ(t)
[γ(t)κ(t)2 + c(t)][c(t) +Ap1(t)]

[1 +Ap1(t)]c(t)2

n(t)γ̇(t) = γ(t)
c(t) + 2Ap1(t)

1 + Ap1(t)
− κ(t)γ(t)

c(t) +Ap1(t)
1 +Ap1(t)

(57)

with p1(t) = c(t) − γ(t)κ(t)[1 − e−κ(t)]. These equations
determine the exact graph reduction dynamics for gener-
alized leaf removal, and can be solved numerically. Due to
the non-zero selection weights for all degrees, these equa-
tions do not suffer from the appearance of negative values
for certain pd(t), and the algorithm always constructs a
vertex cover. The number of covered vertices at algorith-
mic time t can be calculated from equation (12), which for
our special choices of k and wd reads

ẋ(t) =
c(t) +Ap1(t)
1 +Ap1(t)

· (58)

The relative size of the finally constructed vertex cover
is, with probability one, given by x(tf ), with tf following
from c(tf ) = 0. In Figure 3, the results are presented for
several values of A and compared with Gazmuri’s resp.
Bauer and Golinelli’s algorithms.

7 Summary and outlook

The solution of many combinatorial optimization prob-
lems requires exponential time resources and is thus re-
stricted to relatively small system sizes. For larger sys-
tems, good and fast approximation algorithms are needed,
which are frequently based on heuristic considerations
concerning correlations between local problem structure
and optimal problem solutions.

0 2 4 6
c

0

0.25

0.5

0.75

x

Fig. 3. Final size xf(c) of the vertex covers constructed by
generalized leaf removal. The selection weight is wd = Aδd,1+1
with A = 0, 1, 10, 100 (dashed lines from top to bottom). For a
comparison, the result of the original leaf-removal algorithm is
represented by the full line: For c < e, a minimal VC is found,
whereas the algorithm fails completely to construct a VC for
c > e.

Constructing a minimal vertex cover of a given graph
belongs to the basic NP-hard problems, and can be un-
derstood as a prototype combinatorial optimization prob-
lem. In this paper, we have therefore analysed linear-time
algorithms for constructing small vertex covers of finite-
connectivity random graphs. The applied heuristic ex-
ploits the observation that vertices of high vertex degree
are more likely to be covered in minimal VCs, whereas
those of small degree remain more frequently uncovered.

We have introduced and analysed mainly two types of
algorithms, namely depth-zero and depth-one algorithms.
In the first case, vertices are selected randomly and (if con-
nected to any other vertex) they are covered. We found
that the performance of the algorithm can be largely im-
proved by preferentially selecting vertices of high degree.

We also observed that depth-zero algorithms were out-
performed by depth-one algorithms. These select a vertex
in every algorithmic step and uncover it. All neighbours
of the selected vertex must be covered consequently. The
best performance is achieved if the algorithm always se-
lects a vertex of smallest degree. As was already found
by Bauer and Golinelli [16], this procedure even outputs
an (almost) minimal VC if it is applied to random graphs
of average connectivity c0 < e. The algorithm constructs
good approximations also for higher connectivities.

Both types of algorithms can be interpreted as Marko-
vian graph reduction processes. They are analytically
characterized by the evolution of the degree distribution of
the remaining uncovered subgraphs. The dynamical equa-
tions were solved in some cases, in other cases approxima-
tions were necessary.

The presented approach can be extended into several
directions:

• The applied heuristic was restricted to considering the
simplest local structure, namely the degree of the se-
lected vertex. Depth-one algorithms can be improved
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by e.g. selecting a vertex of minimal degree but with
maximal number of next-nearest neighbours. Covering
the nearest neighbours thus results in a higher number
of covered edges. It would be interesting to extend the
rate equations to this case.
• VC is used as a prototype optimization problem, but

the approach can be generalized to other combina-
torial problems defined over random structures, e.g.
to graph coloring or satisfiability problems. For ran-
dom 3-satisfiability, lower bounds for the SAT/UNSAT
threshold are usually obtained using algorithms in the
so-called card-game representation [8,9], which corre-
sponds to wd = const. in our analysis.
• Our analysis was restricted to the typical time evo-

lution of the degree distribution. Deviations appear
with exponentially small probability – and are thus
important for small systems. These rare events can
be systematically exploited by exponentially frequent
restarts of the algorithm. If a minimal VC is found with
probability p = e−τN , we need e(τ+ε)N restarts to al-
most surely construct a VC (for all ε > 0). As observed
recently for simple heuristics of vertex cover [28] and
3-satisfiability [29], this random restart algorithm can
be exponentially faster than exact standard procedures
(like backtracking). The performance can be improved
further by using a more sophisticated heuristics.
• Also sophisticated complete algorithms, i.e. those that

find an optimal solution for sure, use heuristic argu-
ments for accelerating the combinatorial search. The
presented ideas may hence contribute to the analysis
of such algorithms, and the insight may be used to
exponentially speed up the numerical search.
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